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Consider a medium characterized by N points whose coordinates are randomly generated by a uniform
distribution along the edges of a unitary d-dimensional hypercube. A walker leaves from each point of this
disordered medium and moves according to the deterministic rule to go to the nearest point which has not been
visited in the preceding � steps �deterministic tourist walk�. Each trajectory generated by this dynamics has an
initial nonperiodic part of t steps �transient� and a final periodic part of p steps �attractor�. The neighborhood
rank probabilities are parametrized by the normalized incomplete beta function Id= I1/4�1/2 , �d+1� /2�. The
joint distribution S�,d

�N��t , p� is relevant, and the marginal distributions previously studied are particular cases. We
show that, for the memory-less deterministic tourist walk in the euclidean space, this distribution is
S1,d

����t , p�= ���1+ Id
−1��t+ Id

−1� /��t+ p+ Id
−1���p,2, where t=0, 1,2,…, �, ��z� is the gamma function and �i,j is

the Kronecker delta. The mean-field models are the random link models, which correspond to d→�, and the
random map model which, even for �=0, presents nontrivial cycle distribution �S0,rm

�N� �p�� p−1� :S0,rm
�N� �t , p�

=��N� / ���N+1− �t+ p��N t+p�. The fundamental quantities are the number of explored points ne= t+ p and Id.
Although the obtained distributions are simple, they do not follow straightforwardly and they have been
validated by numerical experiments.
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I. INTRODUCTION

The random walks in regular and disordered media are a
very explored subject, capable to model several phenomena,
in particular the transport problems �1,2�. On the other hand,
deterministic walks in disordered media are less explored
and their behaviors are not completely understood yet.

Here we consider deterministic walks in disordered me-
dia. The disordered medium is characterized by N points
whose coordinates are randomly generated, according to a
uniform distribution, along the unitary edges of a
d-dimensional hypercube. A walker leaves from each point
of this disordered medium and moves according to the deter-
ministic rule to go to the nearest point which has not been
visited in the last � steps. The quantity � is called memory
and represents the required time �in number of steps� to the
regeneration of the visited sites �refractory time�. The trajec-
tory generated by this dynamics �deterministic tourist walk�
has an initial nonperiodic part of t steps, called transient, and
ends in a stable cycle of period p steps �attractor� where the
same sites are visited in the same order. Although the dy-
namic may be simply stated, it has a complex behavior, with
nontrivial results for ��2 �3–7�. This rule may be relaxed,
allowing the walker to visit the nearest sites with greater
probabilities than the furthest ones �stochastic tourist walk�
�8,9�. Other than suggesting a possible mechanism for migra-
tion �3� this walk has been applied to thesaurus characteriza-
tion �5� and monkey movimentation �7�.

Depending on the system dimensionality d and the
memory �, several situations may be considered. The sim-
plest case is the lazy tourist ��=0�. The walker remains
caught in the initial site. Thus all sites of the system are
attractors of unitary period. The joint distribution is
S0,d�t , p�=�t,0�p,1. Although this situation is trivial, its exten-
sion to the stochastic tourist walk �9� and for the random
map model �10� is interesting because of its analycity �glass
transition in the former and nontrival cycle distribution in the
latter�. For �=1, the tourist has to leave the site where he/she
is and move to the nearest site among the remainders. Here
the tourist knows, at each step, only the nearest site from
his/her present position, but he/she does not recall any of the
sites visited. In this case, the trajectories always end in two
sites, which are mutually nearest neighbors �couple�. There-
fore, the period distribution is S1,d�p�=�p,2, but the transient
distribution is not trivial and will be addressed here. The
stochastic tourist walk with �=1 has been investigated in
Ref. �8�. The cases ��2 �treat with the quantity �=�−1�
drastically differ from the preceding ones. Even for �=2, it
is possible to obtain trajectories with long transients and pe-
riods �4–6�.

The higher the Euclidean space dimensionality, the
weaker are the correlations �as triangular inequality, for in-
stance� among distances. When d→�, these correlations
may be neglected and the distances between the sites may be
considered as independent random variables. Only the back/
forward symmetry Di,j =Dj,i is preserved. This is the random
link model �RLM�, earlier proposed by Mézard and Parisi
�11� and lately explored by Percus and Martin �12�.

If the back/forward distances are different, the symmetry
Di,j =Dj,i is not preserved and all the N�N−1� distances are

*Electronic address: cesartercariol@gmail.com
†Electronic address: asmartinez@ffclrp.usp.br

PHYSICAL REVIEW E 72, 021103 �2005�

1539-3755/2005/72�2�/021103�8�/$23.00 ©2005 The American Physical Society021103-1

http://dx.doi.org/10.1103/PhysRevE.72.021103


random independent variables. In this case, the only reminis-
cent characteristic related to the previous model is the null
distance from a site to itself �Di,i=0, ∀i, and �=1�. A variant
of the asymmetric random link studied by Derrida and Fly-
vbjerg �10�, called random map model �RMM�, consists to
eliminate the restriction Di,i=0, allowing the distance from a
site to itself not to vanish. This distance may represent a cost
for the tourist remains in a certain site, for instance. Unlike
previous models, even for �=0, the dynamics for this model
gives rise to a complex cycle period distribution. This walk
corresponds to the mean-field approximation for the Kauff-
man networks �13�.

The main objective of this paper is to generalize the geo-
metric distribution and analytically obtain the probability
joint distribution for transient time and attractor period for a
�=1 deterministic tourist walk. Also, we study how these
distributions are affected by the dimensionality and the
border/finite-size effects. We stress that Id and the number of
visited sites ne are the relevant quantities of the problem. To
solve this problem we have adopted the following strategy.
First, the solutions have been obtained in the limiting dimen-
sionalities, i.e., d→� and d=1, and then the distribution for
finite d has been inferred through a generalization of the
geometrical distribution. All obtained results have been nu-
merically validated.

This paper is divided as it follows: In Sec. II, we present
the parametrization of Cox’s equation by Id. In Sec. III, we
analytically determine the transient distribution for the RLM
for arbitrary N. An analogy to the geometric distribution is
then established. The subsistence and capture probabilities
through the walk are defined, which will be the standard
interpretation to treat the considered models. We then focus
on the one-dimensional �1D� systems. With a simple modi-
fication in the algebraic formulation, the transient distribu-
tion for the infinite medium is obtained. Finally, we general-
ize the obtained results to systems with arbitrary
dimensionalities and numerically show their validity. In Sec.
IV, the joint distribution of the transient time and attractors
period for the RMM is obtained. Final considerations are
presented in Sec. V, where the role of Id and ne= t+ p to the
joint distributions is stressed. In the Appendix, some special
functions are recalled.

II. REFLEXIVE NEIGHBORS

In a Poissonic process of dimensionality d, the probability
that an arbitrary event is the mth nearest neighbor of its own
nth nearest neighbor is given by Cox’s equation �14�

Pm,n
�d� =

�Id
−1 + 1�−�m+n�

1 − Id
�
j=1

min�m,n�
�Id

−2 − 1� j��m + n − j�
��j���m + 1 − j���n + 1 − j�

.

�1�

The medium dimensionality is implicitly considered in

Id = I1/4�1

2
,
d + 1

2
	 
 1 −

e−d/8

�	d/8
, �2�

�denoted by p in Ref. �14�� which is written in terms of the
normalized incomplete beta function �Eqs. �A2� and �A3��.

As shown in the Appendix, the approximation is justified for
d
1. This is the relevant quantity that parametrizes the tran-
sient time distributions studied here. This quantity suggests a
characteristic dimensionality �d0=8� from which the effects
related to the dimensionality of the system can be neglected.

In particular, for m=n, Eq. �1� gives the n-order reflexive
neighbors probability �Dacey’s equation �15��

Pn
�d� =

�Id
−1 + 1�−2n

1 − Id
�
j=1

n
�Id

−2 − 1� j��2n − j�
��j��2�n + 1 − j�

. �3�

The first-order reflexive neighbors probability represents the
probability of finding the medium attractors for �=1 walk-
ers, and Eq. �3� reduces to

P1
�d� =

1

1 + Id
, �4�

and P1
�d�=1/ �2−e−d/8 /�	d /8�, when d
1. The quantity P1

�d�

can also be interpreted as the null transient time probability
S1,d�t=0�= P1

�d� in the �=1 tourist walk. The value of P1
�d�

ranges from 3/4, for d=0, and diminishes monotoly, con-
verging exponentially to the asymptotic value 1/2, as d
→� �16�. Notice that Eq. �4� produces results for any real
value d, which opens the possibility to the interpretation to
noninteger dimensionality �fractals�. Curiously, the analytical
continuation for d=0 leads to P1

�0�=3/4 and not P1
�0�=1 as

one would possibly expect.

III. TRANSIENT TIME DISTRIBUTION

Here we obtain the treansient time distribution for �=1
tourist walk. We start obtaining analytical results for the
RLM �since the site distances are independent random vari-
ables�, then for 1D systems, and finally the result is inferred
to an arbitrary dimensionality systems.

A. Random link model

The RLM represents a mean-field model for the Euclidean
space high dimensionality limit. Consider N independent
continuous random variables X1, X2 ,… ,XN, with probability
density functions �pdf’s� f1�x1�, f2�x2� ,… , fN�xN�, respec-
tively. The random variable Y =min�X1 ,X2 ,… ,XN� pdf g�y�
can be determined as follows �17�: The condition for Y to
assume a given value y is that at least one of the variables X1,
X2… ,XN is equal to y and all of the remainders are greater or
equal to y :g�y�=�i=1

N fi�y�� j��i�=1
N y

�dxjf j�xj�.
If all variables X1, X2 ,… ,XN have the same pdf f�x�, then:

g�y�=Nf�y��1−F�y��N−1, where F�y�=−�
y dxf�x� is the f�x�

cumulative function. In particular, if f�x� is a uniform be-
tween 0 and 1 then g�y�=N�1−y�N−1, with y varying from 0
to 1.

In the high dimensionality limit, the distances are inde-
pendent random variables, but what is the pdf? In fact, it
does not matter to the tourist walk. Let us see the reason. For
a given random variable X, following the pdf f�x�, one can
define another random variable Y =h�X�, with some aimed
pdf g�Y� simply imposing the condition that their cumulative
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distributions are equal, G�Y�=F�X�. If g�y��0, for all pos-
sible values of Y, then the cumulative function G is a bijec-
tion, and the definition Y =G−1�F�X�� leads to h=G−1 �F.
Thus, if the distances Di,j are particular values of a random
variable X, with pdf f�x�, it is then possible to obtain the
random variable Y =h�X� with uniform pdf g�y�=1 in the
interval �0; 1�. In this case, the cumulative function G is the
identity function, so its inverse is the identity function too.
Hence, Y =F�X�=0

Xdx f�x�. As f�x��0, ∀x, one has that Y
is a strictly crescent function of X. Therefore, if the distances
D1 and D2 obey the relation D1�D2 in the X metrics, their
correspondent values in the metrics Y will also do. For the
deterministic tourist walk, both metrics yield the same tra-
jectories, since in each step, it is not important the distance to
be run, but only the neighborhood rank.

The transient time probability distribution for a determin-
istic walk, with �=1, can be obtained for the RLM by noting
that �i� the distance matrix is symmetric, �ii� the distance
between the sites are independent random variables and uni-
formly distributed in the interval from 0 to 1, and �iii� the
walk distance decreases at each step, until the tourist enters a
two cycle.

The walk distance x1 in the first step is the minimum of
the N−1 independent random variables. In the second step,
only N−2 new independent distances are available �because
of the metrics symmetry, the distance to the first site has
already been evaluated�. Thus, for a trajectory with a tran-
sient size tN−2, it is necessary and sufficient that xt+1
�xt� ¯ �x2�x1 and that xt+2�xt+1, where xj represents
the minimum of the distances to the N− j sites not visited up
to the jth step. This leads to the following transient time
distribution: S1,rl

�N� �t�=0
1dx1�N−1��1−x1�N−2� j=2

t+10
x j−1dxj�N

− j��1−xj�N−j−1xt+1

1 dxt+2�N− t−2��1−xt+2�N−t−3. Consider ai

=N− �t+2�+ i, with i=0,1 ,… , t+1, so that

S1,rl
�N� �t� = ��

i=0

t+1

ai��
0

1

dx1�1 − x1�at+1−1�
j=2

t+1 �
0

xj−1

�dxj�1 − xj�at+2−j−1�
xt+1

1

dxt+2�1 − xt+2�a0−1. �5�

Figure 1 schema shows the calculation of the t+2 chained
integrals of the Eq. �5� for some particular values of t. Sum-
ming these terms �and multiplying the sum by the produtory
of Eq. �5��, one obtains generically: S1,rl

�N� �t�
=a1�� j=2

t aj /�k=j
t+1ak� /�i=0

t+1ai, where �i=0
t+1ai= �N− �t+3� /2��t

+2� and �k=j
t+1ak= �N− �t+3− j� /2��t+2− j�. Calling k= t+2

− j leads to

S1,rl
�N� �t�

S1,rl
��� �t�

=
N − t − 1

N − �t + 3�/2�
k=2

t
N − k

N − �k + 1�/2
, �6�

where t=0, 1, 2, … , N−2 and the transient time distribution
of the RLM in the thermodynamic limit �N
1� is

S1,rl
��� �t� =

t + 1

�t + 2�!
, �7�

which leads to t̄=e−2 and �t
2=e�1− t̄�.

Figure 2 shows the transient time distribution for some
values of N and the convergence to the thermodynamic limit.
Observe that, in particular, S1,rl

��� �0�=1/2= P1
��� �Eq. �4��. An

immediate property is that S1,rl
�N� �1�=1/3.

To measure the finite size effect for a given N, the mean-
square error: E1,rl�N�=�t=0

� �S1,rl
�N� �t�−S1,rl

��� �t��2 /N has been
considered. Numerically, one verifies that, for N�10, E1,rl is
a power law �16�: E1,rl�N�
0,08611N−3.

The probability the tourist enters an attractor is not con-
stant along the walk, but it can be analytically expressed as a

FIG. 1. Chained integral calculation of Eq. �5�. In each integration step, the number of integrals is doubled. The summations are indicated
in the bottom line.
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function of the trajectory step. Let us start with the thermo-

dynamic limit. The cumulative distribution is F1,rl
��� �t�=1

−1/ �t+2�! and Eq. �7� can be alternatively written
as S1,rl

��� �t�= �1−F1,rl
��� �t−1���t+1� / �t+2�= �t+1� / ��t+1� ! �t

+2��, where 1/ �t+1�! represents the probability of the
walker subsisting �not entering an attractor� in the t initial
steps, and �t+1� / �t+2� represents the probability of the
walker being captured �entering an attractor� in the �t+1�th
step. This leads to S1,rl

��� �0�=1/2, S1,rl
��� �1�=1/2�2/3, S1,rl

��� �2�
=1/2�1/3�3/4, S1,rl

��� �3�=1/2�1/3�1/4�4/5¯. Mak-
ing an analogy to the geometric distribution, Eq. �7� can also
be written as

S1,rl
��� �t� = �1 − q1,rl

��� �j��t + 1���
j=1

t

q1,rl
��� �j� , �8�

where the success and, consequently, the failure probabilities
depend on the extraction stage. The subsistence probability
up to the jth step is

q1,rl
��� �j� =

1

j + 1
. �9�

A similar reasoning can be applied to finite size systems.
With some manipulations, Eq. �6� can be expressed in the
form S1,rl

�N� �t�= �1− �N− t−2� / ��N− �t+1� /2−1��t+2����k=1
t �N

−k−1� / ��N−k /2−1��k+1�� which allows us to obtain the
finite size correction factor for the subsistence probability

q1,rl
�N� �j�

q1,rl
��� �j�

=
N − j − 1

N − j/2 − 1
. �10�

Here it is convienient to deal with the cumulative of the
generalized geometric distribution: S�t�= �1−q�t
+1��� j=1

t q�j�. It can be obtained as follows: S�0�=1−q�1�,
S�1�=q�1�−q�1�q�2�, S�2�=q�1�q�2�−q�1�q�2�q�3�, … ,
S�t�=q�1�q�2�¯q�t�−q�1�q�2�¯q�t+1�. Summing the
members, yields the simple result: F�t�=�k=0

t S�k�=1
−� j=1

t+1q�j�.
In terms of the subsistence probabilities, Eq. �6� can be

rewritten as: S1,rl
�N� �t�= �1−q1,rl

�N� �t+1��� j=1
t q1,rl

�N� �j� and the cu-

mulative distribution is F1,rl
�N� �t�=1−� j=1

t+1q1,rl
�N� �j�. Observe that

using F1,rl
�N� �t�, one can easily verify that the transient distri-

bution for finite size is also normalized �k=0
N−2S1,rl

�N� �k�=1, since
q1,rl

�N� �N−1�=0.

B. One-Dimensional systems

As the RLM represents the upper limit for the dimension-
ality �d→�� in the Euclidean space, the 1D model repre-
sents the lower limit, which is the easiest to analyze for finite
dimensionality systems. In this section, the transient time
distribution for 1D systems in the thermodynamic limit is
analytically obtained. The demonstration considers a semi-
infinite medium, which establishes a surprising connection
with the RLM. With a simple modification in the previous
model, the transient time distribution for the infinite medium
can be obtained.

1. Semi-infinite medium

The analysis of the semi-infinite disordered medium aims
to �i� develop the calculation kernel for the transient distri-
bution in the infinite medium, �ii� reveal a nontrivial equiva-
lence between 1D systems and the RLM, and �iii� evaluate
the edge effect.

The semi-infinite medium can be thought as a set of un-
countable points randomly and uniformly distributed on a
line segment, with a mean density of r points per unitary
length. Consider site s1 placed at the origin of the line seg-
ment.

This model is described by a 1D Poissonic process. The
sites can be viewed as events, which occur randomly as time
flows. The distances between consecutive sites follow an ex-
ponential pdf: f�x�=re−rx for x�0 and f�x�=0 otherwise.

The transient time distribution for a deterministic walk of
a tourist who leaves from the origin of the system, with �
=1, can be determined by noting that the run distance de-
creases each step. For a trajectory with a t transient steps, it
is necessary and sufficient that xt+1�xt� ¯ �x2�x1 and
xt+2�xt+1, where xj represents the run distance in the jth
step. This leads to

S�t� = �
0

�

dx1re−rx1�
j=2

t+1 �
0

xj−1

dxjre−rxj�
xt+1

�

dxt+2re−rxt+2

=
t + 1

�t + 2�!
, �11�

where the schema of the Fig. 3 ilustrates the calculation of
theses integrals.

This expression is equal to Eq. �7�, the thermodynamic
limit for the RLM. It is also interesting to observe that the
medium mean density �r points by an unitary length� does
not interfere in the transient time distribution, it only affects
the distance the tourist runs each step.

It may seem strange, at first look, that two models that
represent opposite limits, concerning the dimensionality,
present the same expression for the transient time distribu-
tion. This equivalence can be understood noting that al-
though there exist strong correlations in the distance matrix

FIG. 2. Transient time distribution for the random link model.
From bottom to top, the curves refer, respectively, to N=6, 12, 25,
50, 100, 200, and to limit N
1.
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for 1D systems, the distances that really matter for �=1
tourist are those between consecutives sites, and in fact,
these distances are independent variables. Numerical simula-
tions have revealed that this equivalence does not hold for
�=2, because in this case second neighbor distances are also
important �16�.

2. Infinite medium

With a simple modification in the previous model, one is
able to obtain analytically the transient time distribution for a
“left- and right-hand unlimited” medium. Consider the tour-
ist leaves from site s1 of the infinite medium. For a transient
time t, as mentioned before, the only additional condition is
that the distance x0 �between the sites s0 and s1� must be
greater than the distance x1 �between the sites s1 and s2�. One
must also multiply the expression by 2, since the walk can
start either to the left- or right-hand side.
Applying these considerations to Eq. �11�, one
has: S1,1

����t�=20
�dx1re−rx1x1

� dx0re−rx0� j=2
t+10

xj−1dxjre−rxj

�xt+1

� dxt+2re−rxt+2. The integral in x0 is not linked with the

other ones, and can be simply calculated. In this way, the
schema of Fig. 3 became a little different. In the last integra-
tion stage, the term −rx is added to the e−rx, e−2rx, e−3rx

¯

exponents. Consequently, the denominators factors 2, 3,
4,…, from the last integral will be increased by a unity.
Hence: S1,1

����0�=2�2/6, S1,1
����1�=2�3/24, S1,1

����2�=2�4/
120, S1,1

����3�=2�5/720, S1,1
����4�=2�6/5040, S1,1

����5�=2
�7/40 320,…,. Generically, for t=0, 1, 2,…, �, one has

S1,1
����t� =

2�t + 2�
�t + 3�!

. �12�

In this way, we have analytically obtained the normalized
transient time distribution for 1D �=1 systems with N
1.
This leads to t̄=2e−5 and �t

2=2e�2− t̄�−8. Notice that S1,1
���

��0�=2/3= P1
�1� �Eq. �4��.

Similarly to the RLM, the probability the tourist is
trapped in an attractor at each walk step in the 1D case can
also be analytically obtained. The transient time cumulative
distribution is F1,1

����t�=�k=0
t S1,1

����k�=1−2/ �t+3�! and the re-
cursive form of Eq. �12� is S1,1

����t�= �1−F1,1
����t−1���t+2� / �t

+3�=2�t+2� / ��t+2� ! �t+3��. So that S1,1
����0�=2/3, S1,1

����1�
=1/3�3/4, S1,1

����2�=1/3�1/4�4/5, S1,1
����3�=1/3�1/4

�1/5�5/6. In this way

S1,1
����t� = �1 − q1,1

����t + 1���
j=1

t

q1,1
����j� , �13�

where the success and failure probabilities depend on the
stage of the extraction

q1,1
����j� =

1

j + 2
�14�

represents the subsistence probability �not getting an attrac-
tor� up to the jth step.

The notable regularity in RLM and 1D models makes us
consider the subsistence probability as the proper quantity to
the generalization for arbitrary dimensionality systems. Con-
trasting to the RLM, we have numerically verified, for 1D
systems, that the transient time distribution has a weak de-
pendence on N �16�.

C. Arbitrary dimensionality

Here we present arguments which allow us to predict the
analytical form of the transient time distribution for the �
=1 tourist walk in systems with an arbitrary dimensionality
for N
1. As shown in Fig. 4, numerical simulation results
have revealed that the transient time distributions for arbi-
trary dimensionalities lies between the analytically obtained
limiting distributions �d=1 and d→��.

Comparing Eqs. �8� and �13� one notices the same math-
ematical structure. Further, the null transient trajectory prob-
ability in a d-dimensional medium is �Eq. �3��: S1,d

����0�
= P1

�d�=1/ �1+ Id�. This is also the probability the tourist is
captured in the first step. Thus, the subsistence probability in
the first step is q1,d

����1�=1− P1
�d�=1/ �1+ Id

−1�. Comparing Eqs.
�9� and �14�, we infer that the subsistence probability for

FIG. 3. Calculation of chained integrals of Eq. �11�. Each inte-
gration step doubles the number of integrals.
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each step of the trajectory for arbitrary dimensionalities is
given by

q1,d
����j� =

1

j + Id
−1 . �15�

From these subsistence probabilities, it is possible to build
a closed analytical expression for the transient time distribu-
tion for arbitrary dimensionality through the analogy with
the geometric distribution

S1,d
����t� =

��1 + Id
−1��t + Id

−1�
��t + 2 + Id

−1�
, �16�

with t=0,1,2,…, �, which leads to t̄=e���1+ Id
−1�−��1

+ Id
−1 ,1��. Although the obtained results have been based on a

conjecture, numerical simulations have confirmed their va-
lidity.

Consider the following remarks. One can write this distri-
bution in terms of Id and in terms of the number ne= t+ p of
explored sites, once p=2 remaining a t. The cumulative dis-
tribution can be obtained as shown in the end of Sec. III A:
F1,d

����t�=1−��1+ Id
−1� /��t+2+ Id

−1�.

IV. JOINT DISTRIBUTION IN THE RANDOM MAP
MODEL

The Derrida-Flyvbjerg random map �10� is a mean-field
approximation for the Kauffman �13� network. The map is
built associating to each one of the N sites a random site; and
the movement rule is to go, at each time step, to the succes-
sor site. Eventually a site may be its own successor. Even for
�=0 and �=1 the model presents a nontrivial period distri-
bution. This model may be applied to situations where the
concept of distance represents a cost, and the links are rep-
resented by a directed graph. In the RMM, contrasting to the
preceding studied cases, even with �=0, it is possible to
obtain periods varying from 1 to N. Therefore, a joint distri-
bution for the transient time and attractors period is required
to completely describe the walk.

Consider that the tourist starts the walk at site s1. For the
walk to have a transient t=0 and a period p=1 �i.e., consists

on a single point�, the site following s1 must be s1 itself.
Hence, the probability is S0,rm

�N� �0,1�=1/N. For the walk to
have t=1 and p=1, the tourist must go to any site s2 among
the N−1 reminders, and in the following step to remain at s2,
leading to S0,rm

�N� �1,1�= �N−1� /N�1/N. Thus, the transient
time marginal distribution for p=1 is S0,rm

�N� �t ,1�= �N−1� /N
� �N−2� /N¯ �N− t� /N�1/N. To obtain a t=0 transient and
a p=2 period, the walker must go to any of N−1 remaining
sites and, in the second step, return to s1 :S0,rm

�N� �0,2�= �N
−1� /N�1/N. For t=1 and p=2, the walker must go to any
N−1 remaining site, in the second step go to any of the N
−2 reminders, and finally return to s2 :S0,rm

�N� �1,2�= �N
−1� /N� �N−2� /N�1/N. The transient time marginal distri-
bution for p=2 is S0,rm

�N� �t ,1�= �N−1� /N� �N−2� /N¯ �N
− t� /N� �N− t−1� /N�1/N. Generalizing this procedure for
an arbitrary period p, one obtains the values of S0,rm

�N� �t , p�
displayed in the Table I. This N-order matrix is symmetric
and all elements below secondary diagonal are null.

With a simple inspection of the values in TableI one con-
cludes that the transient time and attractor period joint dis-
tribution is

S0,rm
�N� �t,p� =

1

N
�
j=1

t+p−1
N − j

N
=

��N�
��N − t − p + 1�Nt+p , �17�

where t=0, 1,2,…, N− p. Using this expression, one can ob-
tain the marginal probability for the attractor period p. Thus:
S0,rm

�N� �p�=�t=0
N−pS0,rm

�N� �t , p�=� j=p
N ��N� /��N− j+1�Nj. This re-

sult agrees the ones obtained in Refs. �6� and �10�, with
N
1:S0,rm

�N� �p�=1/�Np/�N
� dy e−y2/2=�	 / �2N�erfc�p /�2N�

where p̄=�	N /8 and �p
2 = �2/3−	 /8�N.

Notice that Table I symmetry implies to S0,rm
�N� �p�=S0,rm

�N� �t
−1�, i.e., the marginal distributions for the period p and the
transient t are identical, when time is retarded by one unity.
Also, observe the strong influence of N in the form of the
distribution, which diverges in the thermodynamics limit.

In terms of the number of explored sites ne= t+ p=1, 2,…,
N, Eq. �17� becomes

S0,rm
�N� �ne� =

ne��N�
��N − ne + 1�Nne

. �18�

Figure 5 shows the validation of Eq. �18� through numeri-
cal simulation.

The analogy we have established to the geometric distri-
bution may also be applied to the RMM. Adopt as a failure
the exploration of a new site and as a success the revisit to a

FIG. 4. Effect of the dimensionality on the transient distribution.
From bottom up, the curves refer to d=1, 2, 3, 5, and �.

TABLE I. Joint distribution for transient time and cycle periods.
The table is symmetric and the relevant quantity is the number of
explored sites ne= t+ p.

p t=0 t=1 t=2

1 1
N

N−1
N

1
N

N−1
N

N−2
N

1
N

2 N−1
N

1
N

N−1
N

N−2
N

1
N

N−1
N

N−2
N

N−3
N

1
N

3 N−1
N

N−2
N

1
N

N−1
N

N−2
N

N−3
N

1
N

N−1
N

N−2
N

N−3
N

N−4
N

1
N

TERÇARIOL AND MARTINEZ PHYSICAL REVIEW E 72, 021103 �2005�

021103-6



given site. Consider that the walker leaves from site s1. For
the walker to explore the map in the first time step �visit a
new site�, site s1 must be connected to some of the N−1
other sites, but not to itself. The exploration probability in
the first step is q0,rm

�N� �1�= �N−1� /N. The walker then goes to
site s2. To explore a new site in the second step, site s2 must
be connected to some of the N−2 reminder sites, but neither
to itself nor to s1. Therefore q0,rm

�N� �2�= �N−2� /N. This reason-
ing may be generalized for an arbitrary time step jN

q0,rm
�N� �j� = 1 −

j

N
. �19�

Thus, Eq. �18� is rewritten in the form

S0,rm
�N� �ne� = �1 − q0,rm

�N� �ne�� �
j=1

ne−1

q0,rm
�N� �j� . �20�

The equivalence between Eqs. �18� and �20� is immediately
verified. Notice that the exploration probability decreases in
arithmetic progression each step of the trajectory, contrasting
to the preceding models, where the subsistence probability
decreases in harmonic progression. Another notable differ-
ence is that, in the thermodynamic limit, the exploration
probability is unitary. In this way, the trajectory may have an
infinite transient time, what characterize the chaos.

The cumulative distribution for the number of explored
site ne may be obtained �as shown in the end of Sec. III A�:
F0,rm

�N� �ne�=1−��N� /��N−ne�Nne.

V. CONCLUSION

We have obtained the joint distribution for the �=1 tour-
ist walk for an arbitrary dimension in an Euclidean space and
also in two mean-field models. These distributions are pa-
rametrized by Id and the number of explored sites ne= t+ p.
The former has been introduced by Cox in the context of
spatial statistics. Except for the RLM, we have not succeeded
in obtaining a closed analytical form in the finite size regime

for the joint distributions in an arbitrary dimension. Except
for the RMM, these distributions show a fast �factorial� con-
vergence to the attractors. It is an open question whether this
behavior remains valid or not valid when the tourist has short
range memory.
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APPENDIX: SOME SPECIAL FUNCTIONS

Some special functions which are extensively used along
the text are reviewed here. Initially, consider the gamma
function �18� ��z�=0

�dt tz−1e−t, which main property ��z�
= �z−1���z−1� enables it to be a generalization of the facto-
rial ��z�= �z−1�!. For �z�
1 e�arg z��	, Stirling’s approxi-
mation �18� is used ��z�
�2	 /z�z /e�z�1+1/ �12z�
+1/ �288z2�+ ¯ �. The non-normalized incomplete gamma
function �18� is defined as:

��a,b� = �
0

b

dt ta−1e−t �A1�

and presents the following property �18�: ��1/2 ,x�
=20

�xdt e−t2 =�	 erf��x�, where the error function �18� is de-

fined as erf�z�=2/�	0
zdt e−t2 =2/�	�k=0

� �−1�kz2k+1 / �k ! �2k
+1��, which is monotoly increasing from erf�0�=0 to
erf���=1.

The normalized incomplete beta function �18� is defined
as

Iz�a,b� =
1

B�a,b��0

z

dt ta−1�1 − t�b−1 �A2�

with Re�a��0 e Re�b��0 and the beta function �18� is de-
fined as being the normalization factor of Iz�a ,b� :B�a ,b�
=B�b ,a�=0

1dt ta−1�1− t�b−1=��a���b� /��a+b�. One can
conclude that the beta function is an extension of the inverse
of the combination of the Newton binomial.

It is also convenient to define the complementary func-
tions: The complementar non-normalized gamma function is
written as ��a ,b�=b

�dt ta−1e−t=��a�−��a ,b� and the
complementar error function �18� is defined by: erfc�z�
=2z

�dt e−t2 /�	=1−erf�z�. For �z�
1, the complementar er-
ror function has the following assymptotic form: erfc�z�

e−z2

/ �z�	�.
Consider the behavior of Eq. �A2� when b
a�1. In this

case, Eq. �A2� is written as Iz�a ,b�
ba0
zdt ta−1�1

− t�b /��a�. If t�1, then the factor �1− t�b=eb ln�1−t�
e−bt, so
that: Iz�a ,b�
��a ,bz� /��a�, where ��a ,b� is given by Eq.
�A1�. When a=1/2 and b
1 one has Iz�a ,b�

��1/2 ,bz� /��1/2�
erf��bz�=1−erfc��bz� and

Iz�a,b� 
 1 −
1

�	

e−bz

�bz
. �A3�

FIG. 5. Distribution of the number of explored sites given by
Eq. �18� and numerical simulation. From the top to bottom, the
curves refers, respectively, to N=1000, 2000, 4000, 8000, 16 000,
32 000, 64 000, and 128 000 points by map. The greater N is, the
wider the distribution becomes.
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